Problem 12

In a water purification process, one- nth of the impurity is removed in the first stage. In each succeeding stage, the amount of impurity removed is one- nth of that removed in the preceding stage. Show that if $n=2$, the water can be made as pure as you like, but that if $n=3$, at least one-half of the impurity will remain no matter how many stages are used.

Solution

Assuming there are an infinite number of purification stages, the percentage of impurity removed is given by

$$
\begin{gathered}
{[\overbrace{\left(\frac{1}{n}\right)}^{\text {stage } 1}+\overbrace{\left(\frac{1}{n}\right)\left(\frac{1}{n}\right)}^{\text {stage } 2}+\overbrace{\left(\frac{1}{n}\right)\left(\frac{1}{n}\right)\left(\frac{1}{n}\right)}^{\text {stage } 3}+\cdots] \times 100 \%} \\
100 \% \times \sum_{i=1}^{\infty}\left(\frac{1}{n}\right)^{i} \\
100 \% \times\left[-1+\sum_{i=0}^{\infty}\left(\frac{1}{n}\right)^{i}\right] \\
100 \% \times\left[-1+\frac{1}{1-\left(\frac{1}{n}\right)}\right] \\
100 \%
\end{gathered} \begin{aligned}
& \times\left(-1+\frac{n}{n-1}\right) \\
100 \% & \times\left(\frac{1}{n-1}\right)
\end{aligned}
$$

After an infinite number of purification stages with $n=2$ the percentage of impurity removed is

$$
100 \% \text {. }
$$

After an infinite number of purification stages with $n=3$ the percentage of impurity removed is 50%.

